Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2010110

ABSTRACT

The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Amino Acid Sequence , Humans , Membrane Fusion , Molecular Docking Simulation , Peptides/chemistry , Spike Glycoprotein, Coronavirus/metabolism
2.
Int J Mol Sci ; 23(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1760650

ABSTRACT

The recent covid crisis has provided important lessons for academia and industry regarding digital reorganization. Among the fascinating lessons from these times is the huge potential of data analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond. Drug development is a costly and time-consuming business, and only a minority of approved drugs generate returns exceeding the research and development costs. As a result, there is a huge drive to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too surprising that the new technologies of artificial intelligence and other computational simulation tools can help drug developers. In only two years of covid research, many novel molecules have been designed/identified using artificial intelligence methods with astonishing results in terms of time and effectiveness. This paper reviews the most significant research on artificial intelligence in de novo drug design for COVID-19 pharmaceutical research.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Artificial Intelligence , COVID-19 Drug Treatment , COVID-19/virology , Drug Design , SARS-CoV-2/drug effects , Antiviral Agents/therapeutic use , Drug Discovery/methods , Drug Evaluation, Preclinical , High-Throughput Nucleotide Sequencing , Humans , Ligands , SARS-CoV-2/physiology , Small Molecule Libraries , Structure-Activity Relationship
3.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: covidwho-1389390

ABSTRACT

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 229E, Human/metabolism , Dipeptides/chemistry , Ketones/chemistry , A549 Cells , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Line , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Thermodynamics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Virus Replication/drug effects
4.
Curr Med Chem ; 28(40): 8333-8383, 2021.
Article in English | MEDLINE | ID: covidwho-1269946

ABSTRACT

The recent pandemic due to SARS-CoV-2, the last isolated human betacoronavirus, has revolutionized modern knowledge of the pathogenesis of viral pneumonia. The lack of specific antiviral drugs and the need to develop adequate research for new antiviral drugs capable of treating this new form of the disease undertook three different research paths quickly. The first one is aimed to test antiviral molecules already present in therapeutic use, with a mechanism of action directed towards viral proteins functional to replication or adsorption; the second one, it is the repositioning of molecules with known pharmacological activity for which various chemistry studies have been prepared in an attempt to find new and specific viral targets; the third, it is the search for molecules of natural origin for which to demonstrate a specific anti-coronavirus activity. Many databases of natural and synthetic substances have been used for the identification of potent inhibitors of various viral targets. The field of computer-aided drug design seems to be promising and useful for the identification of SARS-CoV-2 inhibitors; hence, different structure- and ligand- based computational approaches have been used for their identification. This review analyzes in-depth and critically the most recent publications in the field of applied computational chemistry to find out molecules of natural origin with potent antiviral activity. Furthermore, a critical and functional selection of some molecules with the best hypothetical anti-SARS-CoV-2 activity is made for further studies by biological tests.


Subject(s)
COVID-19 , Pneumonia, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Fertilization , Humans , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2
5.
Int J Mol Sci ; 21(16)2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-717746

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a severe global health crisis. In this paper, we used docking and simulation methods to identify potential targets and the mechanism of action of chloroquine (CQ) and hydroxychloroquine (HCQ) against SARS-CoV-2. Our results showed that both CQ and HCQ influenced the functionality of the envelope (E) protein, necessary in the maturation processes of the virus, due to interactions that modify the flexibility of the protein structure. Furthermore, CQ and HCQ also influenced the proofreading and capping of viral RNA in SARS-CoV-2, performed by nsp10/nsp14 and nsp10/nsp16. In particular, HCQ demonstrated a better energy binding with the examined targets compared to CQ, probably due to the hydrogen bonding of the hydroxyl group of HCQ with polar amino acid residues.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Chloroquine/pharmacology , Exoribonucleases/metabolism , Hydroxychloroquine/pharmacology , Methyltransferases/metabolism , Viral Nonstructural Proteins/metabolism , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/drug therapy , Humans , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/drug therapy , RNA, Viral/drug effects , RNA, Viral/genetics , SARS-CoV-2 , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , Virus Replication/drug effects , COVID-19 Drug Treatment
6.
Mar Drugs ; 18(4)2020 Apr 23.
Article in English | MEDLINE | ID: covidwho-108816

ABSTRACT

The current emergency due to the worldwide spread of the COVID-19 caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great concern for global public health. Already in the past, the outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle Eastern respiratory syndrome (MERS) in 2012 demonstrates the potential of coronaviruses to cross-species borders and further underlines the importance of identifying new-targeted drugs. An ideal antiviral agent should target essential proteins involved in the lifecycle of SARS-CoV. Currently, some HIV protease inhibitors (i.e., Lopinavir) are proposed for the treatment of COVID-19, although their effectiveness has not yet been assessed. The main protease (Mpr) provides a highly validated pharmacological target for the discovery and design of inhibitors. We identified potent Mpr inhibitors employing computational techniques that entail the screening of a Marine Natural Product (MNP) library. MNP library was screened by a hyphenated pharmacophore model, and molecular docking approaches. Molecular dynamics and re-docking further confirmed the results obtained by structure-based techniques and allowed this study to highlight some crucial aspects. Seventeen potential SARS-CoV-2 Mpr inhibitors have been identified among the natural substances of marine origin. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds could be bioactive is excellent.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Coronavirus Infections , Pandemics , Pneumonia, Viral , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cysteine Endopeptidases , Databases, Chemical , Humans , Models, Molecular , Molecular Docking Simulation , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL